Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166099

RESUMO

Marine invertebrates represent a valuable reservoir of pharmaceutical bioactive compounds with potential relevance to various medical applications. These compounds exhibit notable advantages when compared to their terrestrial counterparts, in terms of their potency, activity, and mechanism of action. Within this context, the present work aimed to extract, chemically characterize, and investigate the bioactivity of the gonadal extract of the sea urchin Paracentrotus lividus (P. lividus) collected along the Mediterranean coast of Alexandria, Egypt. Fractions of the gonadal extract were characterized by Spectrophotometry and gas chromatography-mass spectrometry (GC-MS), and their bioactivities were investigated in vitro. The analysis supported the extract richness of carotenoids and bioactive compounds. The extract showed promising anticancer activity against three different breast cancer cell lines with different levels of aggressiveness and causative factors, namely MDA-MB-231, MDA-MB-453, and HCC-1954. Gene expression analysis using RT-qPCR showed that P. lividus extract inhibited the expression of crucial factors involved in cell cycle regulation and apoptosis. In addition, the extract significantly inhibited the lipo-polysaccharides (LPS) induced inflammation in the RAW264.7 macrophage cell line and exerted anti-bacterial activity against the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. Collectively, these results demonstrated the chemical richness and the wide-scale applicability of P. lividus gonadal extract as an anti-cancer, anti-bacterial, and anti-inflammatory natural extract.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Paracentrotus , Animais , Humanos , Paracentrotus/metabolismo , Egito , Bactérias
2.
Cell Death Discov ; 9(1): 260, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495566

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a fast-increasing cancer with metastatic potential. Extracellular vesicles (EVs) are small membrane-bound vesicles that play important roles in intercellular communication, particularly in the tumor microenvironment (TME). Here we report that cSCC cells secrete an increased number of EVs relative to normal human epidermal keratinocytes (NHEKs) and that interfering with the capacity of cSCC to secrete EVs inhibits tumor growth in vivo in a xenograft model of human cSCC. Transcriptome analysis of tumor xenografts by RNA-sequencing enabling the simultaneous quantification of both the human and the mouse transcripts revealed that impaired EV-production of cSCC cells prominently altered the phenotype of stromal cells, in particular genes related to extracellular matrix (ECM)-formation and epithelial-mesenchymal transition (EMT). In line with these results, co-culturing of human dermal fibroblasts (HDFs) with cSCC cells, but not with normal keratinocytes in vitro resulted in acquisition of cancer-associated fibroblast (CAF) phenotype. Interestingly, EVs derived from metastatic cSCC cells, but not primary cSCCs or NHEKs, were efficient in converting HDFs to CAFs. Multiplex bead-based flow cytometry assay and mass-spectrometry (MS)-based proteomic analyses revealed the heterogenous cargo of cSCC-derived EVs and that especially EVs derived from metastatic cSCCs carry proteins associated with EV-biogenesis, EMT, and cell migration. Mechanistically, EVs from metastatic cSCC cells result in the activation of TGFß signaling in HDFs. Altogether, our study suggests that cSCC-derived EVs mediate cancer-stroma communication, in particular the conversion of fibroblasts to CAFs, which eventually contribute to cSCC progression.

3.
Cell Death Dis ; 13(9): 832, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171192

RESUMO

The transcription factor SNAI1 mediates epithelial-mesenchymal transition, fibroblast activation and controls inter-tissue migration. High SNAI1 expression characterizes metastatic triple-negative breast carcinomas, and its knockout by CRISPR/Cas9 uncovered an epithelio-mesenchymal phenotype accompanied by reduced signaling by the cytokine TGFß. The SNAI1 knockout cells exhibited plasticity in differentiation, drifting towards the luminal phenotype, gained stemness potential and could differentiate into acinar mammospheres in 3D culture. Loss of SNAI1 de-repressed the transcription factor FOXA1, a pioneering factor of mammary luminal progenitors. FOXA1 induced a specific gene program, including the androgen receptor (AR). Inhibiting AR via a specific antagonist regenerated the basal phenotype and blocked acinar differentiation. Thus, loss of SNAI1 in the context of triple-negative breast carcinoma cells promotes an intermediary luminal progenitor phenotype that gains differentiation plasticity based on the dual transcriptional action of FOXA1 and AR. This function of SNAI1 provides means to separate cell invasiveness from progenitor cell de-differentiation as independent cellular programs.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Plasticidade Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Receptores Androgênicos/metabolismo , Fatores de Transcrição da Família Snail/genética , Fator de Crescimento Transformador beta , Neoplasias de Mama Triplo Negativas/genética
4.
Cancers (Basel) ; 14(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35954411

RESUMO

Glioblastoma multiforme (GBM) is a lethal brain tumor, characterized by enhanced proliferation and invasion, as well as increased vascularization and chemoresistance. The expression of the hyaluronan receptor CD44 has been shown to correlate with GBM progression and poor prognosis. Here, we sought to elucidate the molecular mechanisms by which CD44 promotes GBM progression by knocking out (KO) CD44, employing CRISPR/Cas9 gene editing in U251MG cells. CD44-depleted cells exhibited an impaired proliferation rate, as shown by the decreased cell numbers, decreased Ki67-positive cell nuclei, diminished phosphorylation of CREB, and increased levels of the cell cycle inhibitor p16 compared to control cells. Furthermore, the CD44 KO cells showed decreased stemness and increased senescence, which was manifested upon serum deprivation. In stem cell-like enriched spheres, RNA-sequencing analysis of U251MG cells revealed a CD44 dependence for gene signatures related to hypoxia, the glycolytic pathway, and G2 to M phase transition. Partially similar results were obtained when cells were treated with the γ-secretase inhibitor DAPT, which inhibits CD44 cleavage and therefore inhibits the release of the intracellular domain (ICD) of CD44, suggesting that certain transcriptional responses are dependent on CD44-ICD. Interestingly, the expression of molecules involved in hyaluronan synthesis, degradation, and interacting matrix proteins, as well as of platelet-derived growth factor (PDGF) isoforms and PDGF receptors, were also deregulated in CD44 KO cells. These results were confirmed by the knockdown of CD44 in another GBM cell line, U2990. Notably, downregulation of hyaluronan synthase 2 (HAS2) impaired the hypoxia-related genes and decreased the CD44 protein levels, suggesting a CD44/hyaluronan feedback circuit contributing to GBM progression.

5.
Oncogene ; 40(13): 2463-2478, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674747

RESUMO

Recent advances in genomics unraveled several actionable mutational drivers in lung cancer, leading to promising therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. However, the tumors' acquired resistance to the newly-developed as well as existing therapies restricts life quality improvements. Therefore, we investigated the noncoding portion of the human transcriptome in search of alternative actionable targets. We identified an antisense transcript, LY6K-AS, with elevated expression in lung adenocarcinoma (LUAD) patients, and its higher expression in LUAD patients predicts poor survival outcomes. LY6K-AS abrogation interfered with the mitotic progression of lung cancer cells resulting in unfaithful chromosomal segregation. LY6K-AS interacts with and stabilizes 14-3-3 proteins to regulate the transcription of kinetochore and mitotic checkpoint proteins. We also show that LY6K-AS regulates the levels of histone H3 lysine 4 trimethylation (H3K4me3) at the promoters of kinetochore members. Cisplatin treatment and LY6K-AS silencing affect many common pathways enriched in cell cycle-related functions. LY6K-AS silencing affects the growth of xenografts derived from wildtype and cisplatin-resistant lung cancer cells. Collectively, these data indicate that LY6K-AS silencing is a promising therapeutic option for LUAD that inhibits oncogenic mitotic progression.


Assuntos
Proteínas 14-3-3/genética , Adenocarcinoma de Pulmão/genética , Antígenos Ly/genética , RNA Longo não Codificante/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Animais , Biomarcadores Tumorais/genética , Carcinogênese/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/farmacologia , Feminino , Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Histonas/genética , Humanos , Masculino , Camundongos , Mitose/genética , Prognóstico , Transcriptoma/genética
6.
Methods Mol Biol ; 2254: 239-249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33326079

RESUMO

From high-throughput DNA and RNA sequencing technologies, it is evident that more than two-thirds of the mammalian genome is transcribed and nearly 98% of the transcriptional output in humans constitute noncoding RNA, comprising tens of thousands of small and long noncoding RNAs. These observations have put the study of RNA expression levels at the center of molecular biology research. The transcriptional output of cells changes temporally throughout different cell cycle phases, or in response to a large panel of stimuli. In such instances, the measure of induced RNA transcripts might be obscured by the presence of steady-state RNA levels in the total transcriptome. With this protocol, we provide a method for labeling and purification of the nascent RNAs transcribed over short periods of time in cultured cells. The supplementation of cell culture medium with a chemically modified analog of uridine, ethynyl-uridine, allows for the subsequent biotinylation of ethynyl-uridine residues with a click-chemistry reaction. The labeled RNA is then purified on streptavidin beads and eluted. The purified RNA is suitable for use in RT-qPCR assays as well as in deep sequencing applications.


Assuntos
Técnicas de Cultura de Células/métodos , Perfilação da Expressão Gênica/métodos , RNA/química , RNA/isolamento & purificação , Ciclo Celular , Química Click , Meios de Cultura/química , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fase S , Coloração e Rotulagem , Uridina/análogos & derivados
7.
Methods Mol Biol ; 2254: 273-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33326082

RESUMO

With the rapid revolution in RNA/DNA sequencing technologies, it is evident that mammalian genomes express tens of thousands of long noncoding RNAs (lncRNAs). Since a large majority of lncRNAs have been functionally implicated in cancer development and progression, there is an increasing appreciation for the use of antisense oligonucleotide (ASO)-based therapies targeting lncRNAs in several cancers. Despite their great potential in therapeutic applications, their use is still limited due to cellular toxicity and shortcomings in achieving required stability in biological fluids and tissue uptake. To overcome these limitations, major changes in ASO chemistry have been introduced to generate second and third generation ASOs, including locked nucleic acids (LNA) technology. Here we describe two different LNA-ASO delivery approaches, a peritumoral administration and a systemic delivery in xenograft models of lung adenocarcinoma, that significantly reduced tumor growth without inducing toxicity.


Assuntos
Adenocarcinoma de Pulmão/terapia , Neoplasias Pulmonares/terapia , Oligonucleotídeos Antissenso/administração & dosagem , RNA Longo não Codificante/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Projetos Piloto , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cell Cycle ; 17(23): 2517-2519, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30482083

RESUMO

Comment on: Ali MM, et al. Nature Communications 2018; 9:883.


Assuntos
Neoplasias , RNA Longo não Codificante , Biomarcadores , Regulação Neoplásica da Expressão Gênica , Humanos , Oncogenes
9.
Nat Commun ; 9(1): 883, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491376

RESUMO

Despite improvement in our understanding of long noncoding RNAs (lncRNAs) role in cancer, efforts to find clinically relevant cancer-associated lncRNAs are still lacking. Here, using nascent RNA capture sequencing, we identify 1145 temporally expressed S-phase-enriched lncRNAs. Among these, 570 lncRNAs show significant differential expression in at least one tumor type across TCGA data sets. Systematic clinical investigation of 14 Pan-Cancer data sets identified 633 independent prognostic markers. Silencing of the top differentially expressed and clinically relevant S-phase-enriched lncRNAs in several cancer models affects crucial cancer cell hallmarks. Mechanistic investigations on SCAT7 in multiple cancer types reveal that it interacts with hnRNPK/YBX1 complex and affects cancer cell hallmarks through the regulation of FGF/FGFR and its downstream PI3K/AKT and MAPK pathways. We also implement a LNA-antisense oligo-based strategy to treat cancer cell line and patient-derived tumor (PDX) xenografts. Thus, this study provides a comprehensive list of lncRNA-based oncogenic drivers with potential prognostic value.


Assuntos
Neoplasias/genética , RNA Longo não Codificante/genética , Fase S , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatologia , RNA Longo não Codificante/metabolismo , Análise de Sequência de RNA , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
10.
Cell Cycle ; 13(20): 3241-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485504

RESUMO

Transcriptional events during S-phase are critical for cell cycle progression. Here, by using a nascent RNA capture assay coupled with high-throughput sequencing, we determined the temporal patterns of transcriptional events that occur during S-phase. We show that genes involved in critical S-phase-specific biological processes such as nucleosome assembly and DNA repair have temporal transcription patterns across S-phase that are not evident from total RNA levels. By comparing transcription timing with replication timing in S-phase, we show that early replicating genes show increased transcription late in S-phase whereas late replicating genes are predominantly transcribed early in S-phase. Global anti-correlation between replication and transcription timing was observed only based on nascent RNA but not total RNA. Our data provides a detailed view of ongoing transcriptional events during the S-phase of cell cycle, and supports that transcription and replication are temporally separated.


Assuntos
Replicação do DNA/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Replicação do DNA/genética , Período de Replicação do DNA/genética , Período de Replicação do DNA/fisiologia , Humanos , Fase S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...